Improved Slow Light Capacity In Graphene-based Waveguide
نویسندگان
چکیده
We have systematically investigated the wideband slow light in two-dimensional material graphene, revealing that graphene exhibits much larger slow light capability than other materials. The slow light performances including material dispersion, bandwidth, dynamic control ability, delay-bandwidth product, propagation loss, and group-velocity dispersion are studied, proving graphene exhibits significant advantages in these performances. A large delay-bandwidth product has been obtained in a simple yet functional grating waveguide with slow down factor c/v(g) at 163 and slow light bandwidth Δω at 94.4 nm centered at 10.38 μm, which is several orders of magnitude larger than previous results. Physical explanation of the enhanced slow light in graphene is given. Our results indicate graphene is an excellent platform for slow light applications, promoting various future slow light devices based on graphene.
منابع مشابه
Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides
Articles you may be interested in Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide Appl. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement Ap...
متن کاملSlow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides
Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW-1 and power con...
متن کاملDynamically Tunable Plasmon-Induced Transparency in On-chip Graphene-Based Asymmetrical Nanocavity-Coupled Waveguide System
A graphene-based on-chip plasmonic nanostructure composed of a plasmonic bus waveguide side-coupled with a U-shaped and a rectangular nanocavities has been proposed and modeled by using the finite element method in this paper. The dynamic tunability of the plasmon-induced transparency (PIT) windows has been investigated. The results reveal that the PIT effects can be tuned via modifying the che...
متن کاملDispersion-controlled slow light in photonic crystal waveguides
Slow light with a markedly low group velocity is a promising solution for optical buffering and advanced time-domain optical signal processing. It is also anticipated to enhance linear and nonlinear effects and so miniaturize functional photonic devices because slow light compresses optical energy in space. Photonic crystal waveguide devices generate on-chip slow light at room temperature with ...
متن کاملTransverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies
Transverse-electric (TE) surface plasmons (SPs) are very unusual for plasmonics phenomenon. Graphene proposes a unique possibility to observe these plasmons. Due to transverse motion of carriers, TE SPs speed is usually close to bulk light one. In this work we discuss conditions of TE SPs propagation in cylindrical graphene-based waveguides. We found that the negativity of graphene conductivity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015